

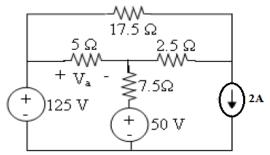
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Network Analysis(16EE205)

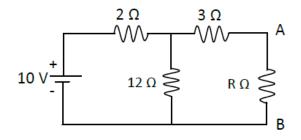
Course & Branch: B.Tech - ECE

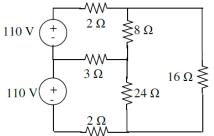

Year & Sem: I-B.Tech & II-Sem

Regulation: R16

<u>UNIT –I</u>

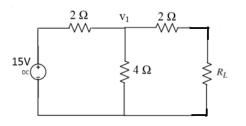
INTRODUCTION


1. a) What do you mean by an electric network and an electric circuit?[L1] [4M]b) Find the value of Va for the following circuit using KVL.[L3] [6M]


2. a) Explain the concept of source transformation?

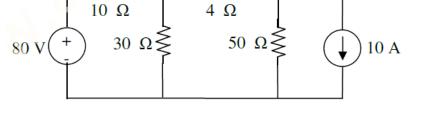
[L3] [4M]

b) Find the maximum power delivered to the load by using maximum power transfer theorem for the following circuit. [L3] [6M]



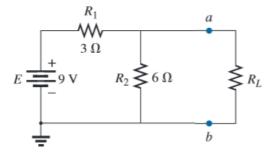
3. (a) State and explain Kirchhoff's laws?[L3] [4M](b) Using nodal analysis find all branch currents for the following circuit[L3] [6M]

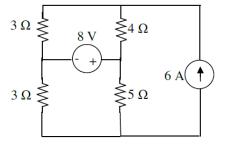
Electrical Circuits (16EE201)


4. a) What is the condition for maximum power transfer to the load?b) Find Thevenin's equivalent for the following circuit.

5. a) State and explain Superposition theorem?

 \sim


b) Verify Superposition theorem for 4Ω resistor for the following circuit.


 \sim

6. a) State and explain milliman's theorem.

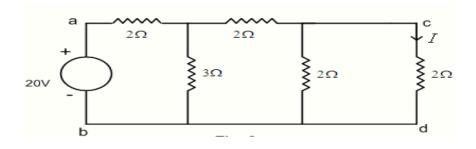
b) Find Norton's equivalent for the following circuit.

7. (a) State Kirchhoff's voltage law?(b) Find branch currents for the following circuit.

8. a)State and explain Norton's theorem?	[L3]	[4M]
b) Verify the reciprocity theorem for the network shown in fig.	[L3]	[6M]

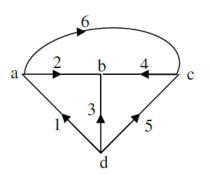
[L3] [4M] [L3] [6M]

Page 2

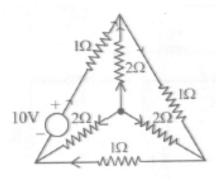

[L3] [4M] [L3] [6M]

[L3] [4M]

[L3] [6M]


[L3] [4M]

[L3] [6M]


9. (a) Define the following terms

(i) Branch(ii) Sub graph(iii) Node(iii) Tree[L3] [4M](b) For the graph shown below find incidence and cut set matrices.[L3] [6M]

10. (a) Define and state the properties of incidence matrix.[L2] [4M](b) For the network shown below draw the graph and find incidence and tie – set matrices.

[L3] [6M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits(16EE201)

Course & Branch: B.Tech - EEE

Year & Sem: I-B.Tech & II-Sem

Regulation: R16

UNIT-II

AC CIRCUITS

b) Deduce the transient response source free series RC circuit. [L3] [6M] 2. (a) Explain about properties of Exponential Response of RLC circuits. [L3] [4M] (b) Deduce the transient response source free series RL circuit [L3] [6M] 3.(a) Explain about Source free RL and RC Circuits. [L3] [4M] (b) Explain the complete response of source free series RLC Circuits. [L3] [6M] 4. (a) Explain about Natural & Forced Response of RLC Circuits. [L3] [6M] 4. (a) Explain the complete response of source free parallel RLC Circuits. [L3] [6M] 4. (a) Explain the complete response of source free parallel RLC Circuits. [L3] [6M] 4. (a) Define Admittance [L3] [2M] b) The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram. [L3] [4M] (b) A resistor of 50Ω, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following [L3] [6M] (i) Impedance (ii) current flowing through the circuit (iii) power factor (iv) voltage across R,L &C (v) power in watts 6. (a) Explain the phasor relation for series RL and RC circuit. [L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
(b) Deduce the transient response source free series RL circuit[L3] [6M]3. (a) Explain about Source free RL and RC Circuits.[L3] [4M](b) Explain the complete response of source free series RLC Circuits.[L3] [6M]4. (a) Explain about Natural & Forced Response of RLC Circuits.[L3] [6M](b) Explain the complete response of source free parallel RLC Circuits.[L3] [6M](c) Explain the complete response of source free parallel RLC Circuits.[L3] [6M](d) b) Explain the complete response of source free parallel RLC Circuits.[L3] [6M](e) Explain the complete response of source free parallel RLC Circuits.[L3] [6M](b) Explain the complete response of source free parallel RLC Circuits.[L3] [6M](e) D The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram.[L3] [8M]5.(a) Explain the phasor relation for R,L,C elements.[L3] [4M](b) A resistor of 50Ω, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following[L3] [6M](i) Impedance(ii) current flowing through the circuit(iii) power factor(iv) voltage across R,L &C(v) power in watts6. (a) Explain the phasor relation for series RL and RC circuit.[L3] [4M](b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L2] [4M](b) A parall
3.(a) Explain about Source free RL and RC Circuits.[L3] [4M](b) Explain the complete response of source free series RLC Circuits.[L3] [6M]4. (a) Explain about Natural & Forced Response of RLC Circuits.[L3] [4M](b) Explain the complete response of source free parallel RLC Circuits.[L3] [4M](b) Explain the complete response of source free parallel RLC Circuits.[L3] [2M]b) The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (ii) power consumed by each impedance. Draw the phasor diagram.[L3] [4M](b) A resistor of 50Q, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following[L3] [6M](i) Impedance(ii) current flowing through the circuit(iii) power factor (iv) voltage across R,L &C(v) power in watts6. (a) Explain the phasor relation for series RL and RC circuit.[L3] [6M](b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]8. (a) Define power factor if R=40\Omega, L=0.2H and C=50µF.[L3] [6M]8. (a) Define power factor, apparent power, active power and reactive power.[L3] [4M]
(b) Explain the complete response of source free series RLC Circuits.[L3] [6M]4. (a) Explain about Natural & Forced Response of RLC Circuits.[L3] [4M](b) Explain the complete response of source free parallel RLC Circuits.[L3] [6M]4. a) Define Admittance[L3] [2M]b) The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram.[L3] [8M]5. (a) Explain the phasor relation for R,L,C elements.[L3] [4M] (b) A resistor of 50Ω, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following[L3] [6M] (i) Impedance(ii) Impedance(ii) current flowing through the circuit(iii) power factor (iii) power factor (iv) voltage across R,L &C(v) power in watts6. (a) Explain the phasor relation for series RL and RC circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]8. (a) Define power factor if R=40Ω, L=0.2H and C=50µF.[L3] [6M]8. (a) Define power factor, apparent power, active power and reactive power.[L3] [4M]
4. (a) Explain about Natural & Forced Response of RLC Circuits.[L3] [4M](b) Explain the complete response of source free parallel RLC Circuits.[L3] [6M]4. a) Define Admittance[L3] [2M]b) The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram.[L3] [8M]5. (a) Explain the phasor relation for R, L, C elements.[L3] [4M](b) A resistor of 50Q, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following[L3] [6M](i) Impedance(ii) current flowing through the circuit(iii) power factor (iv) voltage across R, L &C(v) power in watts6. (a) Explain the phasor relation for series RL and RC circuit.[L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]6. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]8. (a) Define power factor if R=40 Ω , L=0.2H and C=50 μ F.[L3] [6M]8. (a) Define power factor, apparent power, active power and reactive power.[L3] [4M]
(b) Explain the complete response of source free parallel RLC Circuits.[L3] [6M]4.a) Define Admittance[L3] [2M]b) The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram.[L3] [8M]5.(a) Explain the phasor relation for R,L,C elements.[L3] [4M](b) A resistor of 50Ω, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following[L3] [6M](i) Impedance(ii) current flowing through the circuit (iv) voltage across R,L &C(v) power in watts6. (a) Explain the phasor relation for series RL and RC circuit.[L3] [4M](b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L2] [4M](b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF.[L3] [6M]8. (a) Define power factor, apparent power, active power and reactive power.[L3] [4M]
4.a) Define Admittance[L3] [2M]b) The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram.[L3] [8M]5.(a) Explain the phasor relation for R,L,C elements.[L3] [4M](b) A resistor of 50Q, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following[L3] [6M](i) Impedance(ii) current flowing through the circuit(iii) power factor (iv) voltage across R,L &C(v) power in watts6. (a) Explain the phasor relation for series RL and RC circuit.[L3] [4M](b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L3] [6M]8. (a) Define power factor if R=40 Ω , L=0.2H and C=50µF.[L3] [6M]8. (a) Define power factor, apparent power, active power and reactive power.[L3] [4M]
 b) The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram. [L3] [8M] 5.(a) Explain the phasor relation for R,L,C elements. [L3] [4M] (b) A resistor of 50Q, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following [L3] [6M] (i) Impedance (ii) current flowing through the circuit (iii) power factor (iv) voltage across R,L &C (v) power in watts 6. (a) Explain the phasor relation for series RL and RC circuit. [L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. [L3] [4M]
applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram. [L3] [8M] 5.(a) Explain the phasor relation for R,L,C elements. [L3] [4M] (b) A resistor of 50 Ω , inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following [L3] [6M] (i) Impedance (ii) current flowing through the circuit (iii) power factor (iv) voltage across R,L &C (v) power in watts 6. (a) Explain the phasor relation for series RL and RC circuit. [L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40 Ω , L=0.2H and C=50µF. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
 (iii) power consumed by each impedance. Draw the phasor diagram. [L3] [8M] 5.(a) Explain the phasor relation for R,L,C elements. [L3] [4M] (b) A resistor of 50Ω, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following (L3] [6M] (i) Impedance (ii) current flowing through the circuit (iii) power factor (iv) voltage across R,L &C (v) power in watts 6. (a) Explain the phasor relation for series RL and RC circuit. (L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. (L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. (L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. (L3] [4M]
 5.(a) Explain the phasor relation for R,L,C elements. [L3] [4M] (b) A resistor of 50Ω, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following [L3] [6M] (i) Impedance (ii) current flowing through the circuit (iii) power factor (iv) voltage across R,L &C (v) power in watts 6. (a) Explain the phasor relation for series RL and RC circuit. [L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
 (b) A resistor of 50Ω, inductance of 100mH and a capacitance of 100µF are connected in series across 200V, 50Hz supply. Determine the following [L3] [6M] (i) Impedance (ii) current flowing through the circuit (iii) power factor (iv) voltage across R,L &C (v) power in watts 6. (a) Explain the phasor relation for series RL and RC circuit. [L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
 series across 200V, 50Hz supply. Determine the following [L3] [6M] (i) Impedance (ii) current flowing through the circuit (iii) power factor (iv) voltage across R,L &C (v) power in watts 6. (a) Explain the phasor relation for series RL and RC circuit. [L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
 (i) Impedance (ii) current flowing through the circuit (iii) power factor (iv) voltage across R,L &C (v) power in watts 6. (a) Explain the phasor relation for series RL and RC circuit. [L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
 (iv) voltage across R,L &C (v) power in watts 6. (a) Explain the phasor relation for series RL and RC circuit. (L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. (L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power.
 6. (a) Explain the phasor relation for series RL and RC circuit. [L3] [4M] (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
 (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] 7. (a) Explain the phasor relation for parallel RLC circuit. [L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
is average power of this circuit.[L3] [6M]7. (a) Explain the phasor relation for parallel RLC circuit.[L2] [4M](b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determinecircuit current and power factor if R=40Ω, L=0.2H and C=50µF.[L3] [6M]8. (a) Define power factor, apparent power, active power and reactive power.[L3] [4M]
 7. (a) Explain the phasor relation for parallel RLC circuit. [L2] [4M] (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. [L3] [6M] 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
 (b) A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF. 8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
circuit current and power factor if R=40Ω, L=0.2H and C=50µF.[L3] [6M]8. (a) Define power factor, apparent power, active power and reactive power.[L3] [4M]
8. (a) Define power factor, apparent power, active power and reactive power. [L3] [4M]
(b) The impodences of percellel singuit are $71 - (4 + i6)$ shows and $72 - (12 + i0)$ shows. If the
(b) The impedances of parallel circuit are $Z1 = (4+j6)$ ohms and $Z2 = (12-j8)$ ohms. If the
applied voltage is 220V, find (i) current and power factor of each branch (ii) overall current
(iii) power consumed by each impedance. Draw the phasor diagram. [L3] [6M]
9. (a) Explain the phasor relation for parallel RL and RC elements. [L3] [4M]
Electrical Circuits (16EE201) Page 4

(b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L3] [6M] [L3] [4M]

- 10. (a) Explain the characteristics of sinusoids.
 - (b) A resistor of 150 Ω , inductance of 200mH and a capacitance of 10 μ F are connected in [L3] [6M]
 - series across 500V, 150Hz supply. Determine the following
 - (i) Impedance (ii) current flowing through the circuit
- (iii) power factor
- (iv) voltage across R,L &C (v) power in watts

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits(16EE201)

Year & Sem: I-B.Tech & II-Sem

Course & Branch: B.Tech - EEE

Regulation: R16

UNIT-III

RESONANCE & MAGNETICALLY COUPLED CIRCUITS

 A series RLC circuit has R=10Ω, L=0.5H and C=40µF. The applied voltage is 100V. Find (a) Resonant frequency & Quality factor of a coil (b) Bandwidth (c) Upper and lower Half power frequencies (d) Current at resonance & current at half power points (e) Voltage 		
across inductance & voltage across capacitance at resonance.	[L3] [10M]	
2. (a) In a parallel resonance circuit (Tank circuit) R=2 Ω , L=1mH and C=10 μ F, Find the		
Resonant frequency, Dynamic impedance and Bandwidth.	[L3] [6M]	
(b) Obtain the expression for resonant frequency for parallel RL-RC circuit.	[L3] [4M]	
3. Obtain the expression for resonant frequency, bandwidth and Q-factor for	parallel R-L-C	
circuit.	[L3] [10M]	
4. Obtain the expression for resonant frequency, bandwidth and Q-factor for	Series R-L-C	
circuit.	[L3] [10M]	
5. Show that the resonant frequency circuit $f_r^2 = f_1 f_2$ where f_1 and f_2 are the half power frequencies		
and f_r is the resonant frequency.	[L3] [10M]	
6. Write the comparison between series resonance and parallel resonance?	[L2] [10M]	
7. Define and explain self and mutual inductance.	[L3] [10M]	
8. a) Explain about dot convention in mutually coupled circuits.	[L1] [4M]	
b) Discuss briefly about energy considerations in mutually coupled circuits.	[L3] [6M]	
9. Explain about linear transformer and ideal transformer.	[L2] [10M]	
10. In a parallel Resonant circuit shown in figure. (1), find the Resonant frequency, Dynamic		
Impedance, Bandwidth, Q-factor and Current at resonance?	[L3] [10M]	

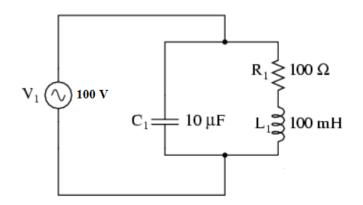
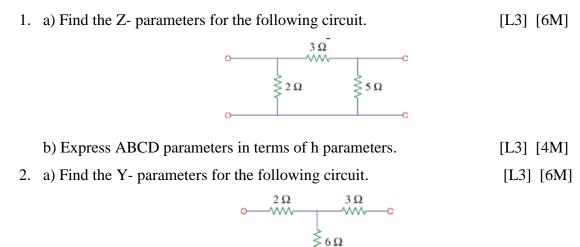


Fig.(1)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

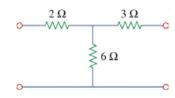

Subject with Code : Electrical Circuits(16EE201)

Year & Sem: I-B.Tech & II-Sem

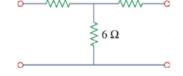
Course & Branch: B.Tech - EEE

Regulation: R16

UNIT-IV TWO PORT NETWORKS & STATE VARIABLE ANALYSIS

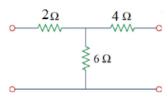


b) Express h parameters in terms of ABCD parameters.	[L3] [4M]
--	-----------

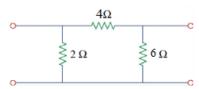

-0

3. a) Find the ABCD parameters for the following circuit. [L3] [6M]

[L3] [10M]



b) Express Y parameters in terms of h parameters.	[L3] [4M]
4. a) Find the h- parameters for the following circuit.	[L3] [6M]
<u>- 4Ω 8Ω</u>	



b) Find the relationship between Z and h parameters.	[L3] [4M]
--	-----------


5. Find the Z and Y parameters for the following circuit.

6. a)Find the Y- parameters for the following circuit. [L3] [6M]

- b) Express Z parameters in terms of ABCD parameters. [L3] [4M]
- 7. Find the ABCD and h parameters for the following circuit. [L3] [10M]

- 8. Explain about the state variables and state variables of circuits. [L3] [10M]
- 9. a) What are the advantages of state variable analysis. [L3] [4M]

b) The transfer function of a system is G(s)=2/(s+1)(s+2). Obtain a state variable representation for the system. [L3] [6M]

10. Explain about proper and improper behavior of the circuits. [L3] [10M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits(16EE201)

Year & Sem: I-B.Tech & II-Sem

Course & Branch: B.Tech - EEE

Regulation: R16

UNIT-V FILTERS

1. a) Explain Neper and Decibel.	[L2] [4M]
b) What is a constant K low pass filter, derive its characteristics impedance.	[L2] [6M]
2. a) What is a filter? Explain about various types of filters.	[L2] [4M]
b) Explain the classification of pass band and stop band in detail.	[L2] [6M]
3. Derive the expression for characteristic impedance in a pass band filter.	[L2] [10M]
4. Explain the design procedure for a constant K low pass filter and its characteristics.	[L2] [10M]
5. Design a constant K high pass filter and explain its design procedure in detail.	[L2] [10M]
6. What is high pass filter. Explain the general configuration and parameters of a cont	tant-K high
pass filter.	[L2] [10M]
7. What is an m-derived filter? Explain the general configuration and parameters of r	n-derived low
pass filter.	[L2] [10M]
8. Derive necessary expressions for m-derived high pass filter.	[L2] [10M]
9. Give the analysis for the design of constant-K band pass filter.	[L2] [10M]
10. Design a band elimination filter and explain its design procedure in detail.	[L2] [10M]

Prepared by:

C.R.HEMAVATHI ASSISTANT PROFESSOR DEPT. OF EEE SIETK